Particle Size and Pre-Treatment Effects on Polystyrene Microplastic Settlement in Water: Implications for Environmental Behavior and Ecotoxicological Tests

Author:

Eitzen Lars,Ruhl Aki SebastianORCID,Jekel Martin

Abstract

Microplastic (MP) particle dispersions used in many recent publications covering adsorption or toxicological studies are not characterized very well. The size distribution of polydisperse dispersions is highly dependent on the agglomeration processes and influences experimental outcomes. Therefore, pre-treatment is a prerequisite for reproducibility. In this study, manual/automated shaking and ultrasonic treatment as different mechanical dispersion techniques were applied for the dispersion of cryomilled polystyrene (PS). Particle numbers and size distribution of dispersions were analyzed by a light extinction particle counter and the dispersion efficiency (ED) as the ratio between calculated volume and theoretical volume of suspended particles was used to compare techniques. PS dispersions (20 mg/L) treated for 90 min in an ultrasonic bath (120 W, 35 kHz) were evenly dispersed with a particle concentration of 140,000 particles/mL and a high reproducibility (rel. SD = 2.1%, n = 6). Automated horizontal shaking for 754 h (250 rpm) reached similar particle numbers (122,000/mL) but with a lower reproducibility (rel. SD = 9.1%, n = 6). Manual shaking by hand dispersed the lowest number of particles (55,000/mL) and was therefore found to be unsuitable to counteract homo-agglomeration. ED was calculated as 127%, 104% and 69% for ultrasonic treatment, horizontal shaking and manual shaking, respectively, showing an overestimation of volume assuming spherical shaped particles.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3