A Bidirectional Deep-Learning-Based Spectral Attention Mechanism for Hyperspectral Data Classification

Author:

Praveen BishwasORCID,Menon VineethaORCID

Abstract

Hyperspectral remote sensing presents a unique big data research paradigm through its rich information captured across hundreds of spectral bands, which embodies vital spatial and temporal information about the underlying land cover. Deep-learning-based hyperspectral data analysis methodologies have made significant advancements over the past few years. Despite their success, most deep learning frameworks for hyperspectral data classification tend to suffer in terms of computational and classification efficacy as the data size increases. This is largely due to their equal emphasis criteria on the rich spectral information present in the data, albeit all of the spectral information not being essential for hyperspectral data analysis. On the contrary, this redundant information present in the spectral bands can deter the performance of hyperspectral data analysis techniques. Therefore, in this work, we propose a novel bidirectional spectral attention mechanism, which is computationally efficient and capable of adaptive spectral information diversification through selective emphasis on spectral bands that comprise more information and suppress the ones with lesser information. The concept of 3D-convolutions in tandem with bidirectional long short-term memory (LSTM) is used in the proposed architecture as spectral attention mechanism. A feedforward neural network (FNN)-based supervised classification is then performed to validate the performance of our proposed approach. Experimental results reveal that the proposed hyperspectral data analysis model with spectral attention mechanism outperforms other spatial- and spectral-information-extraction-based hyperspectral data analysis techniques compared.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications,2011

2. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks;Chen;IEEE Trans. Geosci. Remote Sens.,2016

3. Hyperspectral Image Classification using Convolutional Neural Networks and Multiple Feature Learning;Gao;Remote Sens.,2018

4. Deep recurrent neural networks for hyperspectral image classification;Mou;IEEE Trans. Geosci. Remote Sens.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3