Fundamental Relation for Gas of Interacting Particles in a Heat Flow

Author:

Hołyst Robert1ORCID,Makuch Karol1ORCID,Giżyński Konrad1,Maciołek Anna12ORCID,Żuk Paweł J.13

Affiliation:

1. Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland

2. Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstr. 3, D-70569 Stuttgart, Germany

3. Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

Abstract

There is a long-standing question of whether it is possible to extend the formalism of equilibrium thermodynamics to the case of nonequilibrium systems in steady-states. We have made such an extension for an ideal gas in a heat flow. Here, we investigated whether such a description exists for the system with interactions: the van der Waals gas in a heat flow. We introduced a steady-state fundamental relation and the parameters of state, each associated with a single way of changing energy. The first law of nonequilibrium thermodynamics follows from these parameters. The internal energy U for the nonequilibrium states has the same form as in equilibrium thermodynamics. For the van der Waals gas, U(S*,V,N,a*,b*) is a function of only five parameters of state (irrespective of the number of parameters characterizing the boundary conditions): the effective entropy S*, volume V, number of particles N, and rescaled van der Waals parameters a*, b*. The state parameters, a*, b*, together with S*, determine the net heat exchange with the environment. The net heat differential does not have an integrating factor. As in equilibrium thermodynamics, the steady-state fundamental equation also leads to the thermodynamic Maxwell relations for measurable steady-state properties.

Funder

European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement

Minister of Science and Higher Education

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference29 articles.

1. Callen, H.B. (2006). Thermodynamics and an Introduction to Thermostatistics, John Wiley & Sons.

2. Müller, I. (2007). A History of Thermodynamics: The Doctrine of Energy and Entropy, Springer Science & Business Media.

3. Thermodynamic relationships for shearing linear viscoelastic fluids;Daivis;J. Non-Newton. Fluid Mech.,2008

4. Relationships between rational extended thermodynamics and extended irreversible thermodynamics;Jou;Philos. Trans. R. Soc. A,2020

5. Groot, S.R.D., and Mazur, P. (2013). Non-Equilibrium Thermodynamics, Courier Corporation.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3