Sida Golden Mosaic Virus, an Emerging Pathogen of Snap Bean (Phaseolus vulgaris L.) in the Southeastern United States

Author:

Gautam Saurabh1ORCID,Buck James W.2,Dutta Bhabesh3ORCID,Coolong Timothy4,Sanchez Tatiana5ORCID,Smith Hugh A.6,Adkins Scott7,Srinivasan Rajagopalbabu1

Affiliation:

1. Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA

2. Department of Plant Pathology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA

3. Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA

4. Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30602, USA

5. University of Florida, IFAS Extension, 22712 W. Newberry Road, Newberry, FL 32669, USA

6. Department of Entomology and Nematology, University of Florida, 14625 Co Rd 672, Wimauma, FL 33598, USA

7. USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA

Abstract

Sida golden mosaic virus (SiGMV) was first detected from snap bean (Phaseolus vulgaris L.) in Florida in 2006 and recently in Georgia in 2018. Since 2018, it has caused significant economic losses to snap bean growers in Georgia. This study, using a SiGMV isolate field-collected from prickly sida (Sida spinosa L.), examined the putative host range, vector-mediated transmission, and SiGMV-modulated effects on host–vector interactions. In addition, this study analyzed the phylogenetic relationships of SiGMV with other begomoviruses reported from Sida spp. Host range studies confirmed that SiGMV can infect seasonal crops and perennial weed species such as snap bean, hollyhock (Alcea rosea L.), marsh mallow (Althaea officinalis L.), okra (Abelmoschus esculentus (L.) Moench), country mallow (Sida cordifolia L.), prickly sida (S. spinosa), and tobacco (Nicotiana tabacum L.). The incidence of infection ranged from 70 to 100%. SiGMV-induced symptoms and virus accumulation varied between hosts. The vector, Bemisia tabaci Gennadius, was able to complete its life cycle on all plant species, irrespective of SiGMV infection status. However, SiGMV infection in prickly sida and country mallow positively increased the fitness of whiteflies, whereas SiGMV infection in okra negatively influenced whitefly fitness. Whiteflies efficiently back-transmitted SiGMV from infected prickly sida, hollyhock, marsh mallow, and okra to snap bean, and the incidence of infection ranged from 27 to 80%. Complete DNA-A sequence from this study shared 97% identity with SiGMV sequences reported from Florida and it was determined to be closely related with sida viruses reported from the New World. These results suggest that SiGMV, a New World begomovirus, has a broad host range that would allow its establishment in the farmscapes/landscapes of the southeastern United States and is an emerging threat to snap bean and possibly other crops.

Funder

Georgia Commodity Commission for Vegetables

UGA-USDA ARS

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3