Analyzing Power Beacon Assisted Transmission with Imperfect CSI in Wireless Powered Sensor Networks

Author:

Tang XuanxuanORCID,Yang Wendong,Cai Yueming,Yang Weiwei

Abstract

This paper proposes the maximal ratio transmission (MRT) and maximal ratio combining (MRC) protocols for the power beacon (PB) assisted wireless powered sensor networks and analyzes the impact of the imperfect channel state information (CSI) on the performance using the Markov chain theory. The wireless powered sensor chooses to transmit information to the destination or harvest energy from the PB when its energy can or cannot supply a transmission, respectively. The energy arrival and departure of the sensor is characterized, and the analytical expressions of the network transmit probability, and effective and overall ergodic capacities are formulated and derived. We also optimize the sensor transmit power to maximize the overall ergodic capacity. Our results reveal that the transmit probability and the effective ergodic capacity can be greatly improved with increasing the number of antennas at the PB and the destination, and can also be significantly degraded by decreasing the channel correlation factors. We also demonstrate the effectiveness of the sensor transmit power optimization in improving the overall ergodic capacity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Smart Parking Management through Machine Learning and AI Integration in IoT Environments;Navigating the Internet of Things in the 22nd Century - Concepts, Applications, and Innovations [Working Title];2024-08-23

2. MAC Protocol Analysis for Wireless Sensor Networks;Journal of Information Technology Research;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3