A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds

Author:

Yan Bo,Xu Na,Zhao Wen-Bo,Xu Lu-Ping

Abstract

Hough Transform (HT), which has a low sensitivity to local faults and good ability in suppressing noise and clutters, usually applies to trajectory detection in a cluttered environment. This paper describes its application for detecting the trajectories of extended targets in three-dimensional measurements, i.e., a two-dimensional positional information and its measuring time. For taking the full merits of a multi-scan, the measuring time is regarded as a variable for the time axis. This correspondence extends the HT to 3-dimensional data. Meanwhile, a three-dimensional accumulator matrix is built for the purpose of voting. The voting process is done in an iterative way by selecting the 3D-line with the most votes and removing the corresponding measurements in each step. The three dimensional Hough Transform-based extended target track-before-detect technique (3DHT-ET-TBD), proposed here, is suitable to track the extended target and non-extended target simultaneously and few false alarm trajectories arise. Both the real data and simulated data are exploited to evaluate its performance. Compared with the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter based methods and a 4DHT-TBD algorithm, the 3DHT-ET-TBD is a more promising approach for multi-extended target tracking problems due to its high efficiency and low computation, especially in situations where the noise and false alarms are considerably high but few measurements are generated by the extended targets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Point Target and Extended Target Tracking Algorithms;2024 3rd International Conference on Image Processing and Media Computing (ICIPMC);2024-05-17

2. Multiple Pedestrian Tracking Using LiDAR Network in Complex Indoor Scenarios;IEEE Sensors Journal;2024-04-15

3. A Novel Method for High-speed Weak Target Detection and Tracking;Proceedings of the 2024 8th International Conference on Digital Signal Processing;2024-02-23

4. Dynamic programming network for point target detection;EURASIP Journal on Advances in Signal Processing;2023-06-26

5. Track-before-Detect Algorithm for Underwater Diver Based on Knowledge-Aided Particle Filter;Sensors;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3