The Short-Arc Precise Orbit Determination of GEO Satellites Using VLBI and Transfer Ranging

Author:

Nan Kai,Cao Fen,Gong Jianjun,Lei Hui,Li Zhigang,Yang Xuhai

Abstract

It is important for a geostationary Earth orbit (GEO) satellite to rapidly recover its orbit after a maneuver with short-arc precise orbit determination (POD). Based on orbit determination by transfer tracking (ODTT), the POD accuracy of a GEO satellite is less than 10 m over a short arc. ODTT can achieve high accuracy in the radial direction but is weak in the transverse direction. Considering that very long baseline interferometry (VLBI) can reduce the value of position dilution of precision (PDOP), especially in the transverse direction, a joint POD method using both VLBI and ODTT is proposed herein to improve POD accuracy and rapidly recover the orbit. An ODTT system and the first VLBI 2010 Global Observation System (VGOS) in China was used to track the ZX 12# GEO satellite. The results showed that the ODTT POD accuracy was 3.016 and 2.707 m for 2 and 4 h arcs, respectively. When using both VLBI and ODTT, the POD accuracy was 2.658 m for the 2 h arc, an improvement of 11.87% compared to the POD using ODTT alone. Therefore, VLBI and ODTT can be used together to increase the short-arc POD accuracy while also reducing the arc length necessary to recover the orbit.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. A new method for determination of satellite orbits by transfer;Li;Sci. China Ser. G,2008

2. POD experiments using real and simulated time-sharing observations for GEO satellites in C-band transfer ranging system

3. Initial orbit determination of BDS-3 satellites based on new code signals

4. Assessment of positioning performances in Italy from GPS, BDS and GLONASS constellations

5. Using CAPS ranging data to determine the orbit of GEO satellite during orbital change;Huang;Sci. China Ser. G,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3