Automated Damage Detection of (C/C)/Si/SiC Composite Using Vibration Modes with Deep Neural Networks

Author:

Shibata Chihiro,Shichijo NaohiroORCID,Matsuoka Johei,Takeshima Yuriko,Yang Jenn-Ming,Tanaka Yoshihisa,Kagawa Yutaka

Abstract

Discontinuous carbon fiber-carbon matrix composites dispersed Si/SiC matrix composites have complicated microstructures that consist of four phases (C/C, Si, SiC, and C/SiC). The crack stability significantly depends on their geometrical arrangement. Nondestructive evaluation is needed to maintain the components in their safe condition. Although several nondestructive evaluation methods such as the Eddy current have been developed, any set of them is still inadequate in order to cover all of the scales and aspects that (C/C)/Si/SiC composites comprise. We propose a new method for nondestructive evaluation using vibration/resonance modes and deep learning. The assumed resolution is mm-order (approx. 1–10 mm), which laser vibrometers are generally capable of handling sufficiently. We utilize deep neural networks called convolutional auto-encoders for inferring damaged areas from vibration modes, which is a so-called inverse problem and infeasible to solve numerically in most cases. We solve this inference problem by training convolutional auto-encoders using vibration modes obtained from a non-damaged specimen with various frequencies as the dataset. Experimental results show that the proposed method successfully detects the damaged areas of validation specimens. One of the noteworthy points of this method is that we need only a few specimens for training deep neural networks, which generally require a large amount of data.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3