A Hierarchical Path Planning Approach with Multi-SARSA Based on Topological Map

Author:

Wen Shiguang,Jiang YufanORCID,Cui Ben,Gao Ke,Wang FeiORCID

Abstract

In this paper, a novel path planning algorithm with Reinforcement Learning is proposed based on the topological map. The proposed algorithm has a two-level structure. At the first level, the proposed method generates the topological area using the region dynamic growth algorithm based on the grid map. In the next level, the Multi-SARSA method divided into two layers is applied to find a near-optimal global planning path, in which the artificial potential field method, first of all, is used to initialize the first Q table for faster learning speed, and then the second Q table is initialized with the connected domain obtained by topological map, which provides the prior information. A combination of the two algorithms makes the algorithm easier to converge. Simulation experiments for path planning have been executed. The results indicate that the method proposed in this paper can find the optimal path with a shorter path length, which demonstrates the effectiveness of the presented method.

Funder

the Foundation of National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expected-mean gamma-incremental reinforcement learning algorithm for robot path planning;Expert Systems with Applications;2024-09

2. A substructure transfer reinforcement learning method based on metric learning;Neurocomputing;2024-09

3. Mapless Path Planning for Mobile Robot Based on Improved Deep Deterministic Policy Gradient Algorithm;Sensors;2024-08-30

4. Trajectory planning of robotic arm based on improved RRT method;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

5. A novel optimization method: wave search algorithm;The Journal of Supercomputing;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3