Application of Multivariate Statistical Analysis in the Development of a Surrogate Water Quality Index (WQI) for South African Watersheds

Author:

Banda TalentORCID,Kumarasamy MuthukrishnavellaisamyORCID

Abstract

Water quality indices (WQIs) are customarily associated with heavy data input demand, making them more rigorous and bulky. Such burdensome attributes are too taxing, time-consuming, and command a significant amount of resources to implement, which discourages their application and directly influences water resource monitoring. It is then imperative to focus on developing compatible, simpler, and less-demanding WQI tools, but with equally matching computational ability. Surrogate models are the best fitting, conforming to the prescribed features and scope. Therefore, this study attempts to provide a surrogate WQI as an alternative water quality monitoring tool that requires fewer inputs, minimal effort, and marginal resources to function. Accordingly, multivariate statistical techniques which include principal component analysis (PCA), hierarchical clustering analysis (HCA) and multiple linear regression (MLR) are applied primarily to determine four proxy variables and establish relevant model coefficients. As a result, chlorophyll-a, electrical conductivity, pondus Hydrogenium and turbidity are the final four proxy variables retained. A vital feature of the proposed surrogate index is that the input parameters qualify for inclusion into remote monitoring systems; henceforth, the model can be applied in remote monitoring programs. Reflecting on the model validation results, the proposed surrogate WQI is considered scientifically stable, with a minimum magnitude of divergence from the ideal water quality values. More importantly, the model displayed a predictive pattern identical to the ideal graph, matching on both index scores and classification values. The established surrogate model is an important milestone with the potential of promoting water resource monitoring and assisting in capturing of spatial and temporal changes in South African river catchments. This paper aims at outlining the methods used in developing the surrogate water quality index and document the results achieved.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference77 articles.

1. A Guide to Non-Point Source Assessment: To Support Water Quality Management of Surface Water Resources in South Africa (WRC Project No. 696/2/01);Pegram,2001

2. Review of surrogate modeling in water resources

3. A review of surrogate models and their application to groundwater modeling

4. Advances in surrogate based modeling, feasibility analysis, and optimization: A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3