ABDGAN: Arbitrary Time Blur Decomposition Using Critic-Guided TripleGAN

Author:

Lee Tae Bok1ORCID,Heo Yong Seok12ORCID

Affiliation:

1. Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea

2. Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea

Abstract

Recent studies have proposed methods for extracting latent sharp frames from a single blurred image. However, these methods still suffer from limitations in restoring satisfactory images. In addition, most existing methods are limited to decomposing a blurred image into sharp frames with a fixed frame rate. To address these problems, we present an Arbitrary Time Blur Decomposition Triple Generative Adversarial Network (ABDGAN) that restores sharp frames with flexible frame rates. Our framework plays a min–max game consisting of a generator, a discriminator, and a time-code predictor. The generator serves as a time-conditional deblurring network, while the discriminator and the label predictor provide feedback to the generator on producing realistic and sharp image depending on given time code. To provide adequate feedback for the generator, we propose a critic-guided (CG) loss by collaboration of the discriminator and time-code predictor. We also propose a pairwise order-consistency (POC) loss to ensure that each pixel in a predicted image consistently corresponds to the same ground-truth frame. Extensive experiments show that our method outperforms previously reported methods in both qualitative and quantitative evaluations. Compared to the best competitor, the proposed ABDGAN improves PSNR, SSIM, and LPIPS on the GoPro test set by 16.67%, 9.16%, and 36.61%, respectively. For the B-Aist++ test set, our method shows improvements of 6.99%, 2.38%, and 17.05% in PSNR, SSIM, and LPIPS, respectively, compared to the best competitive method.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3