Query-Based Object Visual Tracking with Parallel Sequence Generation

Author:

Liu Chang1,Zhang Bin1,Bo Chunjuan2,Wang Dong1

Affiliation:

1. School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China

2. School of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China

Abstract

Query decoders have been shown to achieve good performance in object detection. However, they suffer from insufficient object tracking performance. Sequence-to-sequence learning in this context has recently been explored, with the idea of describing a target as a sequence of discrete tokens. In this study, we experimentally determine that, with appropriate representation, a parallel approach for predicting a target coordinate sequence with a query decoder can achieve good performance and speed. We propose a concise query-based tracking framework for predicting a target coordinate sequence in a parallel manner, named QPSTrack. A set of queries are designed to be responsible for different coordinates of the tracked target. All the queries jointly represent a target rather than a traditional one-to-one matching pattern between the query and target. Moreover, we adopt an adaptive decoding scheme including a one-layer adaptive decoder and learnable adaptive inputs for the decoder. This decoding scheme assists the queries in decoding the template-guided search features better. Furthermore, we explore the use of the plain ViT-Base, ViT-Large, and lightweight hierarchical LeViT architectures as the encoder backbone, providing a family of three variants in total. All the trackers are found to obtain a good trade-off between speed and performance; for instance, our tracker QPSTrack-B256 with the ViT-Base encoder achieves a 69.1% AUC on the LaSOT benchmark at 104.8 FPS.

Funder

National Natural Science Foundation of China

Talent Fund of Liaoning Province

Excellent Science and Technique Talent Foundation of Dalian

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3