Preprocessing of Iris Images for BSIF-Based Biometric Systems: Binary Detected Edges and Iris Unwrapping

Author:

Rubio Arthur1ORCID,Magnier Baptiste23ORCID

Affiliation:

1. Department of Computer Science & Artificial Intelligence, IMT Mines Ales, Ales, France

2. EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France

3. Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Nîmes, Université de Montpellier, Nîmes, France

Abstract

This work presents a novel approach to enhancing iris recognition systems through a two-module approach focusing on low-level image preprocessing techniques and advanced feature extraction. The primary contributions of this paper include: (i) the development of a robust preprocessing module utilizing the Canny algorithm for edge detection and the circle-based Hough transform for precise iris extraction, and (ii) the implementation of Binary Statistical Image Features (BSIF) with domain-specific filters trained on iris-specific data for improved biometric identification. By combining these advanced image preprocessing techniques, the proposed method addresses key challenges in iris recognition, such as occlusions, varying pigmentation, and textural diversity. Experimental results on the Human-inspired Domain-specific Binarized Image Features (HDBIF) Dataset, consisting of 1892 iris images, confirm the significant enhancements achieved. Moreover, this paper offers a comprehensive and reproducible research framework by providing source codes and access to the testing database through the Notre Dame University dataset website, thereby facilitating further application and study. Future research will focus on exploring adaptive algorithms and integrating machine learning techniques to improve performance across diverse and unpredictable real-world scenarios.

Publisher

MDPI AG

Reference13 articles.

1. How iris recognition works;Daugman;IEEE Trans. Circuits Syst. Video Technol.,2004

2. Strochlic, N. (2017). Famed ‘Afghan Girl’ Finally Gets a Home. Natl. Geogr., 12.

3. Daugman, J. (2002). How These Algorithms Identified the National Geographic Afghan Girl, 18 Years Later, Cambridge Computer Laboratory.

4. Yang, W., Wang, S., Hu, J., Zheng, G., and Valli, C. (2019). Security and Accuracy of Fingerprint-Based Biometrics: A Review. Symmetry, 11.

5. New Methods in Iris Recognition;Daugman;IEEE Trans. Syst. Man Cybern. Part (Cybern.),2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3