Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that may be used to combat pathogens such as bacteria and fungi. USCLs consist of a few basic amino acid residues and at least one lipid moiety, usually a fatty acid chain. Generally, USCLs are potent antimicrobials but their major shortcoming is a relatively high cytotoxicity and hemolytic activity. Glycopeptide antibiotics (e.g. vancomycin) are essential in combating bacterial infections and are popular in medicinal practice. However, literature concerning the effect of glycosylation of peptides on their antimicrobial activity is rather scarce. For the first time, this study highlights the effect of USCLs glycosylation on in vitro biological activity. The aim of this study was to evaluate the impact of glycosylation of a series of USCLs on antimicrobial activity, cytotoxicity and hemolytic activity. Straight-chain fatty acids (C14, C16, C18) were attached to the N-terminal amino group of tripeptides—SRR-NH2, RSR-NH2 and RRS-NH2. Two groups of the lipopeptides were synthetized, the first with unmodified L-serine (USCLs) and the other with L-serine O-glycosylated by N-acetyl-β-d-glucosamine to produce new class of glycosylated ultrashort cationic lipopeptide (gUSCLs). Both USCLs and gUSCLs were tested against planktonic and biofilm cultures of ESKAPE strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Candida glabrata, and hemolytic activity on human erythrocytes and cytotoxicity against the HaCaT cell line was examined. Generally, USCLs and gUSCLs proved to be active against all the tested strains. The highest activity displayed was by lipopeptides containing the C18 fatty acid. Antimicrobial, hemolytic and cytotoxic activities were mainly correlated with amino acid sequence (position of serine/glycosylated serine) and hydrophobicity of molecule and were found to be highly strain-dependent. In general, glycosylation did not guarantee an increased antimicrobial activity or a decreased hemolytic and cytotoxic activities. However, in some cases, gUSCLs proved to be superior to their USCLs analogs. The most pronounced differences were found for peptides with C18 fatty acid and serine at the first and second position against both planktonic cells and biofilm of C. glabrata, as well as the second and third position against S. aureus. It is noteworthy that gUSCLs were also more active against biofilm than were USCLs.
Funder
Medical University of Gdansk statutory
National Science Center
Subject
Molecular Biology,Biochemistry
Reference31 articles.
1. (2022, November 21). European Medicines Agency Antimicrobial Resistance. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/antimicrobial-resistance.
2. WHO (2022, November 21). WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed, Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
3. Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides;Greber;Front. Microbiol.,2017
4. Findlay, B., Szelemej, P., Zhanel, G.G., and Schweizer, F. (2012). Guanidylation and Tail Effects in Cationic Antimicrobial Lipopeptoids. PLoS ONE, 7.
5. Dawgul, M.A., Greber, K.E., Bartoszewska, S., Baranska-Rybak, W., Sawicki, W., and Kamysz, W. (2017). In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity. Mol. J. Synth. Chem. Nat. Prod. Chem., 22.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献