An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition

Author:

Aladhadh SulimanORCID,Almatroodi Saleh A.ORCID,Habib ShabanaORCID,Alabdulatif AbdulatifORCID,Khattak Saeed Ullah,Islam MuhammadORCID

Abstract

Enhancers are sequences with short motifs that exhibit high positional variability and free scattering properties. Identification of these noncoding DNA fragments and their strength are extremely important because they play a key role in controlling gene regulation on a cellular basis. The identification of enhancers is more complex than that of other factors in the genome because they are freely scattered, and their location varies widely. In recent years, bioinformatics tools have enabled significant improvement in identifying this biological difficulty. Cell line-specific screening is not possible using these existing computational methods based solely on DNA sequences. DNA segment chromatin accessibility may provide useful information about its potential function in regulation, thereby identifying regulatory elements based on its chromatin accessibility. In chromatin, the entanglement structure allows positions far apart in the sequence to encounter each other, regardless of their proximity to the gene to be acted upon. Thus, identifying enhancers and assessing their strength is difficult and time-consuming. The goal of our work was to overcome these limitations by presenting a convolutional neural network (CNN) with attention-gated recurrent units (AttGRU) based on Deep Learning. It used a CNN and one-hot coding to build models, primarily to identify enhancers and secondarily to classify their strength. To test the performance of the proposed model, parallels were drawn between enhancer-CNNAttGRU and existing state-of-the-art methods to enable comparisons. The proposed model performed the best for predicting stage one and stage two enhancer sequences, as well as their strengths, in a cross-species analysis, achieving best accuracy values of 87.39% and 84.46%, respectively. Overall, the results showed that the proposed model provided comparable results to state-of-the-art models, highlighting its usefulness.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3