Ploidy Status of Ovarian Cancer Cell Lines and Their Association with Gene Expression Profiles

Author:

Du Ming,Zhang Shuo,Liu Xiaoxia,Xu Congjian,Zhang Xiaoyan

Abstract

As a cancer type potentially dominated by copy number variations, ovarian cancer shows hyperploid karyotypes and large-scale chromosome alterations, which might be promising biomarkers correlated with tumor metastasis and chemoresistance. Experimental studies have provided more information about the roles of aneuploids and polyploids in ovarian cancer. However, ploidy evaluation of ovarian cancer cell lines is still limited, even in some ploidy-related research. Herein, the ploidy landscape of 51 ovarian cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were analyzed, and the ploidy statuses of 13 human ovarian cancer cell lines and 2 murine cell lines were evaluated using G-banding and flow cytometry. Most human ovarian cancer cell lines were aneuploid, with modal numbers of 52–86 and numerical complexity ranging from 5 to 12. A2780, COV434 and TOV21G were screened as diploid cell lines, with a modal number of 46, a low aneuploid score and a near-diploid ploidy value. Two murine cell lines, both OV2944-HM1 and ID-8, were near-tetraploid. Integrated information on karyotypes, aneuploid score and ploidy value supplied references for a nondiploid model construction and a parallel analysis of diploid versus aneuploid. Moreover, the gene expression profiles were compared between diploid and aneuploid cell lines. The functions of differentially expressed genes were mainly enriched in terms of protein function regulation, TGF-β signaling and cell adhesion molecules. Genes downregulated in the aneuploid group were mainly related to metabolism and protein function regulation, and genes upregulated in the aneuploid group were mainly involved in immune regulation. Differentially expressed genes were randomly distributed on all chromosomes, while chromosome 1 alteration might contribute to immune-related alterations in aneuploid cell lines. Chromosome 19 alteration might be potentially significant for aneuploid ovarian cancer cell lines and patients, which needs further verification in ploidy research.

Funder

Shanghai Medical Center of Key Programs for Female Reproductive Diseases

National Natural Sciences Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference61 articles.

1. Cancer Statistics, 2021;Siegel;CA Cancer J. Clin.,2021

2. Epithelial ovarian cancer: Evolution of management in the era of precision medicine;Lheureux;CA Cancer J. Clin.,2019

3. The systemic treatment of recurrent ovarian cancer revisited;Baert;Ann. Oncol.,2021

4. Optimizing treatment in recurrent epithelial ovarian cancer;Corrado;Expert Rev. Anticancer Ther.,2017

5. Does aneuploidy cause cancer?;Weaver;Curr. Opin. Cell Biol.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3