Identifying Immune-Specific Subtypes of Adrenocortical Carcinoma Based on Immunogenomic Profiling

Author:

Lu Qiqi,Nie Rongfang,Luo Jiangti,Wang XiaoshengORCID,You Linjun

Abstract

Background: The tumor immune microenvironment (TIME) of adrenocortical carcinoma (ACC) is heterogeneous. However, a classification of ACC based on the TIME remains unexplored. Methods: We hierarchically clustered ACC based on the enrichment levels of twenty-three immune signatures to identify its immune-specific subtypes. Furthermore, we comprehensively compared the clinical and molecular profiles between the subtypes. Results: We identified two immune-specific subtypes of ACC: Immunity-H and Immunity-L, which had high and low immune signature scores, respectively. We demonstrated that this subtyping method was stable and reproducible by analyzing five different ACC cohorts. Compared with Immunity-H, Immunity-L had lower levels of immune cell infiltration, worse overall and disease-free survival prognosis, and higher tumor stemness, genomic instability, proliferation potential, and intratumor heterogeneity. Furthermore, the ACC driver gene CTNNB1 was more frequently mutated in Immunity-L than in Immunity-H. Several proteins, such as mTOR, ERCC1, Akt, ACC1, Cyclin_E1, β-catenin, FASN, and GAPDH, were more highly expressed in Immunity-L than in Immunity-H. In contrast, p53, Syk, Lck, PREX1, and MAPK were more highly expressed in Immunity-H. Pathway and gene ontology analysis showed that the immune, stromal, and apoptosis pathways were highly enriched in Immunity-H, while the cell cycle, steroid biosynthesis, and DNA damage repair pathways were highly enriched in Immunity-L. Conclusions: ACC can be classified into two stable immune-related subtypes, which have significantly different antitumor responses, molecular characteristics, and clinical outcomes. This subtyping may provide clinical implications for prognostic and immunotherapeutic stratification of ACC.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3