Circ-CPSF1 Worsens Radiation-Induced Oxidative Stress Injury in Caenorhabditis elegans

Author:

Yuan Jing,Lin FeiORCID,Wu Zhiyong,Jiang Zhilin,Wang Ting,Huo SitongORCID,Lai Weinan,Li Li,Zhang Chao

Abstract

Radioactive substances have been used in various aspects in daily life. However, high-energy radiation could cause environmental problems, which would damage the human body. Circular RNA (CircRNA) has great potential in the minimization of ionizing radiation damage. To find a potential diagnostic and therapeutic target for reducing the damage of ionizing radiation, we selected circRNA cleavage and polyadenylation specificity factor subunit 1 (circ-CPSF1) based on its up-regulated expression after X-ray radiation and explored its effect on response to ionizing radiation using Caenorhabditis elegans (C. elegans). Circ-CPSF1 was screened out and its up-regulated expression was verified. The measurement of lifespan and germ cell apoptosis showed that circ-CPSF1 RNAi treatment extended lifespan and reduced apoptotic germ cells. ROS levels were significantly reduced after the interference of circ-CPSF1 in C. elegans with radiation. Mitochondrial membrane potential assay showed that the suppression of circ-CPSF1 could alleviate mitochondrial damage after radiation. Relative genes expression showed the involvement of circ-CPSF1 in radiation mediated DNA damage response pathways and apoptosis pathways. In conclusion, circ-CPSF1 exerts deleterious effects on lifespan, eggs production and germ cell apoptosis of C. elegans through oxidative stress, the DNA damage response (DDR) pathway, and the core apoptotic pathway after ionizing radiation, indicating the potential of circ-CPSF1 to be an important therapeutic target of radiation damage.

Funder

National Natural Science Foundation of China

the Key Research and Development Foundation of Hainan Province

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3