A Flexible Hybrid BCH Decoder for Modern NAND Flash Memories Using General Purpose Graphical Processing Units (GPGPUs)

Author:

Subbiah ArulORCID,Ogunfunmi TokunboORCID

Abstract

Bose–Chaudhuri–Hocquenghem (BCH) codes are broadly used to correct errors in flash memory systems and digital communications. These codes are cyclic block codes and have their arithmetic fixed over the splitting field of their generator polynomial. There are many solutions proposed using CPUs, hardware, and Graphical Processing Units (GPUs) for the BCH decoders. The performance of these BCH decoders is of ultimate importance for systems involving flash memory. However, it is essential to have a flexible solution to correct multiple bit errors over the different finite fields (GF(2 m )). In this paper, we propose a pragmatic approach to decode BCH codes over the different finite fields using hardware circuits and GPUs in tandem. We propose to employ hardware design for a modified syndrome generator and GPUs for a key-equation solver and an error corrector. Using the above partition, we have shown the ability to support multiple bit errors across different BCH block codes without compromising on the performance. Furthermore, the proposed method to generate modified syndrome has zero latency for scenarios where there are no errors. When there is an error detected, the GPUs are deployed to correct the errors using the iBM and Chien search algorithm. The results have shown that using the modified syndrome approach, we can support different multiple finite fields with high throughput.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BCH Implementation on Zynq-7 platform for NANDFLASH;2023 IEEE 15th International Conference on Advanced Infocomm Technology (ICAIT);2023-10-13

2. Performance Analysis of Berlekamp–Massey-Based KES Block for 3-Byte RS Decoder;Lecture Notes in Electrical Engineering;2022

3. Integer Codes Correcting Single Errors within Two Bytes;Journal of Circuits, Systems and Computers;2021-05-14

4. SmartHeating: On the Performance and Lifetime Improvement of Self-Healing SSDs;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021-01

5. Integer Codes Correcting Double Errors and Triple-Adjacent Errors Within a Byte;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3