Abstract
This study investigated slip and magnetic attraction effects in a skid-steered magnetic-wheeled microrobot. The dynamics of the microrobot were derived by considering the slip and magnetic attraction of the wheels. In addition, the slip characteristics of the magnetic wheels were measured using an evaluation apparatus built for this purpose. A simulation program for driving performance was developed as well. Simulations indicated that the turning characteristics of the skid-steered wheeled microrobot degrade because the gripping force decreases due to the decrease in weight with decreasing size. However, the turning characteristics of a skid-steered microrobot can be improved with the magnetic attraction of magnetic wheels. A 5 mm × 9 mm × 6.5 mm skid-steered microrobot with four magnetic wheels was fabricated, and the measured performance was consistent with the simulation results. The differences in driving performance were clarified between a microrobot with column-type magnetic wheels and one with barrel-type magnetic wheels, as well as between forward and backward motion.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference21 articles.
1. MicroFactory Platform for Smart Manufacturing
https://www.sri.com/work/projects/microfactories-for-smart-manufacturing
2. Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献