Multi-Stream Fusion Network for Skeleton-Based Construction Worker Action Recognition

Author:

Tian Yuanyuan1,Liang Yan2,Yang Haibin2ORCID,Chen Jiayu3

Affiliation:

1. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China

2. Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

3. School of Civil Engineering, Tsinghua University, Beijing 100084, China

Abstract

The global concern regarding the monitoring of construction workers’ activities necessitates an efficient means of continuous monitoring for timely action recognition at construction sites. This paper introduces a novel approach—the multi-scale graph strategy—to enhance feature extraction in complex networks. At the core of this strategy lies the multi-feature fusion network (MF-Net), which employs multiple scale graphs in distinct network streams to capture both local and global features of crucial joints. This approach extends beyond local relationships to encompass broader connections, including those between the head and foot, as well as interactions like those involving the head and neck. By integrating diverse scale graphs into distinct network streams, we effectively incorporate physically unrelated information, aiding in the extraction of vital local joint contour features. Furthermore, we introduce velocity and acceleration as temporal features, fusing them with spatial features to enhance informational efficacy and the model’s performance. Finally, efficiency-enhancing measures, such as a bottleneck structure and a branch-wise attention block, are implemented to optimize computational resources while enhancing feature discriminability. The significance of this paper lies in improving the management model of the construction industry, ultimately aiming to enhance the health and work efficiency of workers.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3