Fabrication of Novel Nanohybrid Material for the Removal of Azo Dyes from Wastewater

Author:

Hossain Mohammad RahatORCID,Rashid Taslim UrORCID,Lata Nadira Parvin,Dey Shaikat ChandraORCID,Sarker MithunORCID,Shamsuddin Sayed Md.ORCID

Abstract

This study attempted to harness the dual benefit of adsorption and photocatalytic degradation for efficiently removing a model anionic azo dye, Orange G, from an aqueous solution. For this purpose, a series of bifunctional nanohybrids containing different proportions of naturally occurring biopolymer chitosan and ternary photocatalyst made of kaolinite, TiO2, and ZnO were prepared through the dissolution of chitosan in acid and subsequent deposition on ternary photocatalyst. The characterization through Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrum (EDS) have confirmed the successful fabrication of nanohybrids from TiO2 and chitosan. The adsorptive separation of Orange G from the aqueous solution and subsequent degradation under solar irradiation was thoroughly studied by recording the λmax value of dye in the ultraviolet–visible (UV-Vis) spectrophotometer at various operating conditions of pH, dye concentration, contact time, and compositional variation. The nanohybrid (TP0.75CS0.25) fabricated from 75% ternary photocatalyst (w/w) and 25% chitosan (w/w) removed 97.4% Orange G within 110 min at pH 2.5 and 10 mg/L dye concentration. The relative contribution of chitosan and ternary composite on dye removal was understood by comparing the experimental results in the dark and sunlight. Recyclability experiments showed the suitability of the nanohybrid for long-term repeated applications. Equilibrium experimental data showed a better correlation with the Langmuir isotherm and pseudo-second-order kinetic model. The rapid and nearly complete removal capacity, long-term reusability, and simple fabrication technique make this novel nanohybrid a promising advanced material for removing hazardous azo dyes from industrial effluents.

Funder

Centennial Research Grant, University of Dhaka

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3