A Novel Fixed-Time-Convergent Sliding Mode Technology Using Improved Quantum Particle Swarm Optimization for Renewable Energy Inverters

Author:

Chang En-Chih

Abstract

This paper describes a robust feedback technique involving novel fixed-time-convergent sliding mode technology (NFTCSMT) using improved quantum particle swarm optimization (QPSO) to obtain high-performance renewable energy inverters. Customary SMT encounters long time convergence towards the origin and the influence of the dithering. The NFTCSMT can rapidly impel system-following movement to approach the sliding manifold and effectively accelerate the convergence speed to equilibrium states. However, the NFTCSMT cannot easily select the global optimum of the controller parameters subject to large parameter changes and nonlinear interventions, leading to the dither phenomenon/steady-state error still being caused. The dither inflicts decreased control accuracy, high voltage harmonics, major harm in relation to switching components, and great thermal losses in power electronic converters. The improved QPSO including the unique property of a random compression/expansion factor is used to find optimal parameters of the NFTCSMT in practical applications, for the reason that it importantly mitigates the dither and amends convergent speed as well as guaranteeing global convergence. The presented alliance amid NFTCSMT and improved QPSO achieves faster response time and singularityless, and also yields high-accuracy tracking and dither attenuation. The robust stability using Lyapunov theorem of the suggested system has provided precise mathematical derivations. Simulations show that the suggested controller offers less than 0.1% voltage THD (total harmonic distortion) which exceeds IEEE standard 519 under heavily distorted rectifier loads, and less than 10% voltage dip which surpasses IEEE standard 1159 during step load transients. Experimental tests of an algorithmically controlled laboratory prototype (1 kW, 110 Vrms/60 Hz) of a renewable energy inverter (REI) based on digital signal processing manifest less than 0.05% voltage THD in the face of great inductor-capacitor alterations, and less than 10% voltage dip in the face of transient load scenarios.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference50 articles.

1. Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies;Chen,2020

2. Renewable Energy Systems: Fundamentals and Source Characteristics;Belu,2019

3. Optimization of the Fuel Cell Renewable Hybrid Power Systems;Bizon,2020

4. Renewable Energy Engineering;Jenkins,2017

5. Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications;Bose,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3