Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock

Author:

Kremieniewski MarcinORCID,Błaż SławomirORCID,Stryczek StanisławORCID,Wiśniowski RafałORCID,Gonet Andrzej

Abstract

Drilling boreholes in gas zones and in zones with the possibility of migration or gas exhalation requires a high index of well tightness. An important parameter determining the effectiveness of sealing the annular space is the adhesion of the cement sheath to the rock formation. Low values of adhesion of the cement sheath to the rock formation and to the casing surface result in the formation of uncontrolled gas flows. The lack of adhesion also reduces the stabilization of the pipe column. To obtain the required adhesion, the annular space should be properly cleaned. Thorough removal of filter cake from the drilling fluid increases adhesion and reduces gas migration from the annular space. Therefore, in this work, the authors focus on determining the effect of cleaning the annular space on the adhesion of the cement sheath to the rock formation. The results of the research work allow for further research on the modification of spacers and cement slurries in order to obtain the required increase in adhesion. The article presents the issues related to the preparation of the borehole for cementing by appropriate cleaning of the rock formation from the residue of the mud cake. During the implementation of the works, tests of cleaning the rock surface are performed. The obtained results are correlated with the results of adhesion on the rock–cement sheath cleaned of the wash mud cake contact. When analyzing the obtained test results, a relationship is found between the cleaning of the rock surface and the adhesion of the cement sheath to it.

Funder

The work was financially supported by Ministry of Science and Higher Education Warsaw

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3