Abstract
Accurate forecasting of a building thermal performance can help to optimize its energy consumption. In addition, obtaining the Heat Loss Coefficient (HLC) allows characterizing the thermal envelope of the building under conditions of use. The aim of this work is to study the thermal inertia of a building developing a new methodology based on Long Short-Term Memory (LSTM) neural networks. This approach was applied to the Rectorate building of the University of Basque Country (UPV/EHU), located in the north of Spain. A comparison of different time-lags selected to catch the thermal inertia has been carried out using the CV(RMSE) and the MBE errors, as advised by ASHRAE. The main contribution of this work lies in the analysis of thermal inertia detection and its influence on the thermal behavior of the building, obtaining a model capable of predicting the thermal demand with an error between 12 and 21%. Moreover, the viability of LSTM neural networks to estimate the HLC of an in-use building with an error below 4% was demonstrated.
Funder
Ministerio de Ciencia, Innovación y Universidades
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献