Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions

Author:

Rylov Andrey,Ilyushin PavelORCID,Kulikov Aleksandr,Suslov Konstantin

Abstract

The energy transition is accompanied by developing a digital decentralized low-carbon energy infrastructure with renewable-based generating plants as its main elements. In 2020, 15 photovoltaic power plants (PVPs) with an installed capacity of 364 MW were commissioned in Russia, which is 21.08% of the total installed PVP capacity of Russia. The findings of an analysis of Russia’s current regulatory and technical documents (RTD) concerning the frequency and active power flow control are presented. They indicate that all PVPs must participate in the general primary frequency control (GPFC). This requirement is due to large frequency deviations of transient processes resulting from an emergency active power shortage, which can shut down frequency-maintaining generating plants by relay or process protection devices and industrial consumers with significant damage to them. The requirements suggest full-scale tests of PVP to confirm their readiness for participation in GPFC. The program and results of checking the algorithm of change in the PVP active power, depending on frequency, are demonstrated with an example of one PVP. The full-scale tests confirmed the compliance of the certified PVP with this requirement. The plans for involving PVPs in the power flow control under various topology and operation conditions are considered.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Interdependence of Power Sources in Emergency Modes on Industrial Consumers Power Supply Reliability;2023 International Ural Conference on Electrical Power Engineering (UralCon);2023-09-29

2. Considering Transient Analysis Results in Probabilistic Calculations of Industrial Consumers' Power Supply Reliability;2023 International Ural Conference on Electrical Power Engineering (UralCon);2023-09-29

3. Frequency control by the PV station in electric power systems with hydrogen energy storage;International Journal of Hydrogen Energy;2023-08

4. INCREASING THE EFFICIENCY OF THE USE OF SOLAR PANELS;Scientific Papers Collection of the Angarsk State Technical University;2023-07-05

5. INCREASING THE EFFICIENCY OF THE USE OF SOLAR PANELS;Scientific Papers Collection of the Angarsk State Technical University;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3