Study on Evaluation Method of Impulse Dispersion Performance of Grounding Device Using X-ray Imagining System

Author:

Han Xiaoyan,Luo Donghui,Zhang Xin,Cao Yongxing,Zhang Yu,Ban Gege

Abstract

When the lightning current enters the ground through the grounding system, the impulse dispersion performance can be observed by the phenomenon of soil spark discharge, which is fundamentally determined by the nearby soil. At present, engineers use an empirical formula to convert the soil spark discharge to the impulse coefficient of impulse grounding resistance. Therefore, there is no available quantitative analysis method to evaluate soil impulse dispersion performance. To solve this problem, this paper proposes an evaluation method for the impulse discharge efficiency of soil by using X-ray images, define VI as the parameter, which is the ratio of the volume of the discharge area to the peak current. Then, the rationality and validity of the method are verified. Finally, the variation rules of impulse discharge efficiency are analyzed in different soils. Results show that the VI can reflect the change rules of impulse dispersion performance more clearly under different soil conditions, and this parameter provides a new idea for enhancing the impulse dispersion performance of soil near the grounding electrode.

Funder

State Grid Corporation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Power System Grounding Technology;He,2007

2. Analysis of soil discharge image characteristics under impulse currents;Yuan;Proc. CSEE,2018

3. Experimental study on soil impulse characteristics surrounding Coaxial cylindrical electrode;Chen;Power Syst. Technol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3