Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland

Author:

Gajdzik BożenaORCID,Sroka WłodzimierzORCID,Vveinhardt JolitaORCID

Abstract

The production of steel in the world is dominated by two types of technologies: BF + BOF (the blast furnace and basic oxygen furnace, also known as integrated steel plants) and EAF (the electric arc furnace). The BF + BOF process uses a lot of natural resources (iron ore is a feedstock for steel production) and fossil fuels. As a result, these steel mills have a significantly negative impact on the environment. In turn, EAF technology is characterised by very low direct emissions and very high indirect emissions. The raw material for steel production is steel scrap, the processing of which is highly energy-consuming. This paper analyses the energy intensity of steel production in Poland as a function of investments made in the steel industry in the years 2000–2019. Statistical data on steel production in the EAF process in Poland (which represents an approximately 50% share of the steel produced, as the rest is produced utilising the BF + BOF process) was used. Slight fluctuations are caused by the periodic switching of technology for economic or technical reasons. The hypothesis stating that there is a relationship between the volume of steel production utilising the EAF process and the energy consumption of the process, which is influenced by investments, was formulated. Econometric modelling was used as the research method and three models were constructed: (1) a two-factor power model; (2) a linear two-factor model; and (3) a linear one-factor model. Our findings show that the correlation is negative, that is, along with the increase in technological investments in electric steel plants in Poland, a decrease in the energy consumption of steel produced in electric furnaces was noted during the analysed period.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3