A Numerical Investigation of Mixing Models in LES-FMDF for Compressible Reactive Flows

Author:

Chen WenwuORCID,Liang Jianhan,Zhang Lin,Guan Qingdi

Abstract

The filtered mass density function (FMDF) model has been employed for large-eddy simulations (LES) of compressible high-speed turbulent mixing and reacting flows. However, the mixing model remains a pressing challenge for FMDF methods, especially for compressible reactive flows. In this work, a temporal development mixing layer with two different convective Mach numbers, Mc=0.4 and Mc=0.8, is used to investigate the mixing models. A simplified one-step reaction and a real hydrogen/air reaction are employed to study the mixing and turbulence-chemistry interaction. Two widely used mixing models, interaction by exchange with the mean (IEM) and Euclidean minimum spanning tree (EMST), are studied. Numerical results indicate that no difference is observed between the IEM and EMST models in simple reaction flows. However, for hydrogen/air reactions, the EMST model can predict the reaction more accurately in high-speed flow. For mixing models in compressible reactive flows, the requirement of localness preservation tends to be more essential as the convective Mach number increases. With the increase of compressibility, the sensitivity of the mixing model coefficient is reduced significantly. Therefore, the appropriate mixing model coefficient has a wider range. Results also indicate that a large error may result when using a fixed mixing model coefficient in compressible flows.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancements in large eddy simulations of compressible real gas flows;Computational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title];2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3