A Deep Learning Approach for Maximum Activity Links in D2D Communications

Author:

Yu Bocheng,Zhang Xingjun,Palmieri Francesco,Creignou Erwan,You Ilsun

Abstract

Mobile cellular communications are experiencing an exponential growth in traffic load on Long Term Evolution (LTE) eNode B (eNB) components. Such load can be significantly contained by directly sharing content among nearby users through device-to-device (D2D) communications, so that repeated downloads of the same data can be avoided as much as possible. Accordingly, for the purpose of improving the efficiency of content sharing and decreasing the load on the eNB, it is important to maximize the number of simultaneous D2D transmissions. Specially, maximizing the number of D2D links can not only improve spectrum and energy efficiency but can also reduce transmission delay. However, enabling maximum D2D links in a cellular network poses two major challenges. First, the interference between the D2D and cellular communications could critically affect their performance. Second, the minimum quality of service (QoS) requirement of cellular and D2D communication must be guaranteed. Therefore, a selection of active links is critical to gain the maximum number of D2D links. This can be formulated as a classical integer linear programming problem (link scheduling) that is known to be NP-hard. This paper proposes to obtain a set of network features via deep learning for solving this challenging problem. The idea is to optimize the D2D link schedule problem with a deep neural network (DNN). This makes a significant time reduction for delay-sensitive operations, since the computational overhead is mainly spent in the training process of the model. The simulation performed on a randomly generated link schedule problem showed that our algorithm is capable of finding satisfactory D2D link scheduling solutions by reducing computation time up to 90% without significantly affecting their accuracy.

Funder

Soonchunhyang University

National Key Research and Development Program of China 333

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. The Mobile Economy 2018 (white paper)https://www.gsma.com/mobileeconomy/

2. A Survey on Device-to-Device Communication in Cellular Networks

3. An overview of 3GPP device-to-device proximity services

4. Security of 5G-Mobile Backhaul Networks: A Survey;Choudhary;J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl.,2018

5. Device Identification and Personal Data Attestation in Networks;Gritti;J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl.,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3