Wireless Body Area Network Control Policies for Energy-Efficient Health Monitoring

Author:

David Yair Bar,Geller TalORCID,Bistritz Ilai,Ben-Gal IradORCID,Bambos Nicholas,Khmelnitsky Evgeni

Abstract

Wireless body area networks (WBANs) have strong potential in the field of health monitoring. However, the energy consumption required for accurate monitoring determines the time between battery charges of the wearable sensors, which is a key performance factor (and can be critical in the case of implantable devices). In this paper, we study the inherent trade-off between the power consumption of the sensors and the probability of misclassifying a patient’s health state. We formulate this trade-off as a dynamic problem, in which at each step, we can choose to activate a subset of sensors that provide noisy measurements of the patient’s health state. We assume that the (unknown) health state follows a Markov chain, so our problem is formulated as a partially observable Markov decision problem (POMDP). We show that all the past measurements can be summarized as a belief state on the true health state of the patient, which allows tackling the POMDP problem as an MDP on the belief state. Then, we empirically study the performance of a greedy one-step look-ahead policy compared to the optimal policy obtained by solving the dynamic program. For that purpose, we use an open-source Continuous Glucose Monitoring (CGM) dataset of 232 patients over six months and extract the transition matrix and sensor accuracies from the data. We find that the greedy policy saves ≈50% of the energy costs while reducing the misclassification costs by less than 2% compared to the most accurate policy possible that always activates all sensors. Our sensitivity analysis reveals that the greedy policy remains nearly optimal across different cost parameters and a varying number of sensors. The results also have practical importance, because while the optimal policy is too complicated, a greedy one-step look-ahead policy can be easily implemented in WBAN systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3