The Use of Machine Learning for Comparative Analysis of Amperometric and Chemiluminescent Methods for Determining Antioxidant Activity and Determining the Phenolic Profile of Wines

Author:

Kazak Anatoliy,Plugatar Yurij,Johnson JoelORCID,Grishin Yurij,Chetyrbok PetrORCID,Korzin Vadim,Kaur ParminderORCID,Kokodey TatianaORCID

Abstract

This paper presents an analysis of modern methods used to determine antioxidant activity. According to research by the World Health Organization, the deficiency of such important nutrients as antioxidants leads to a decrease in body resistance and the development of chronic diseases. When it comes to diet, the inclusion of foods with a high content of antioxidants helps to increase life expectancy. As a result of this research, the mass concentration of phenolic substances and the antioxidant activity of phenolic antioxidants in young white and red table wine materials were determined using amperometric and chemiluminescent methods in order to determine antioxidant activity. Regression equations reflecting the relationship between the indicator of antioxidant activity and the value of the mass concentration of phenolic substances in young table wine materials were derived. The conversion coefficient for determining the mass concentration of phenolic substances when using Trolox-C and gallic acid as standards was established, which was—3.75. Based on a multiple linear regression model, the total antioxidant activity of the samples (F9.5 = 19.10 and p = 0.0023) can be fairly accurately predicted with an R2 of 0.921 for the calibration data set. A neural network regression model (NNRM) was chosen for the machine-learning regression analysis of the antioxidant activity of the wine samples due to its effectiveness in predicting outcomes in various applications. The implementation was performed using the fitrnet function provided in the Statistics and Machine Learning Toolbox in MATLAB R2021b. The MSE of the calibration model was 0.056; however, the MSE for the three validation samples was much higher, at 0.272.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3