Abstract
The monitoring of the main variables and parameters of biotechnological processes is of key importance for the research and control of the processes, especially in industrial installations, where there is a limited number of measurements. For this reason, many researchers are focusing their efforts on developing appropriate algorithms (software sensors (SS)) to provide reliable information on unmeasurable variables and parameters, based on the available on-line information. In the literature, a large number of developments related to this topic that concern data-based and model-based sensors are presented. Up-to-date reviews of data-driven SS for biotechnological processes have already been presented in the scientific literature. Hybrid software sensors as a combination between the abovementioned ones are under development. This gives a reason for the article to be focused on a review of model-based software sensors for biotechnological processes. The most applied model-based methods for monitoring the kinetics and state variables of these processes are analyzed and compared. The following software sensors are considered: Kalman filters, methods based on estimators and observers of a deterministic type, probability observers, high-gain observers, sliding mode observers, adaptive observers, etc. The comparison is made in terms of their stability and number of tuning parameters. Particular attention is paid to the approach of the general dynamic model. The main characteristics of the classic variant proposed by D. Dochain are summarized. Results related to the development of this approach are analyzed. A key point is the presentation of new formalizations of kinetics and the design of new algorithms for its estimation in cases of uncertainty. The efficiency and applicability of the considered software sensors are discussed.
Funder
National Scientific Fund of Bulgaria
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献