Toluene Bioremediation by Using Geotextile-Layered Permeable Reactive Barriers (PRBs)

Author:

Yaman CevatORCID,Anil IsmailORCID,Alagha OmarORCID,Blaisi Nawaf I.,Yaman Ayse Burcu,Qureshi Aleem,Cevik Emre,Rehman SuriyaORCID,Gunday Seyda Tugba,Barghouthi Mohammad

Abstract

Sources of contamination in a subsurface environment are petrol, diesel fuel, gasoline at oil refineries, underground storage tanks, transmission pipelines, and different industries. The permeable reactive barrier (PRB) is a promising technology to remediate groundwater in-situ. In this study, synthetic groundwater samples containing toluene are treated in three reactor columns by biological processes. PRB-1 consisted of sand and gravel as reactor media, microbial inoculum (bioaugmentation—BA), and nutrients (biostimulation—BS); PRB-2 consisted of sand and gravel as reactor media, microbial inoculum, nutrients, and 12 layers of nonwoven geotextile fabrics; and PRB-3 consisted of only sand and gravel as reactor media (natural attenuation—NA). This study was conducted to assess the impact of geotextile fabric filter, bioaugmentation, and biostimulation on toluene degradation efficiency. After 167 days of treatment, toluene biodegradation efficiencies varied between 88.2% and 93.8% for PRB 1, between 98.0% and 99.3% for PRB 2, and between 14.2% and 68.6% for PRB 3. The effluent toluene concentrations for PRB-2 were less than the guideline value (0.7 mg/L) of the World Health Organization. Reaction rate data were fitted with a first-order kinetic reaction rate model. This study showed that the toluene removal efficiency in the geotextile layered PRB combined with BA and BS process was significantly higher compared to the other processes tested. This lab-scale study introduced a new PRB configuration suitable for the remediation of sites contaminated with toluene.

Funder

Imam Abdulrahman Bin Faisal University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3