Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes

Author:

Huan ChaoORCID,Zhang Sha,Zhao Xiaoxuan,Li Shengteng,Zhang BoORCID,Zhao Yujiao,Tao Pengfei

Abstract

The combined mine backfill–geothermal (CMBG) system can be used to effectively extract geothermal energy by installing a heat exchange tube (HET) in the underground backfilled stopes of mines, which can be used as the heat supply for buildings in mines and the surrounding areas. The efficient performance of this system strongly depends on the thermal exchange process between the HET and its surrounding cemented paste backfill body (CPB). In this study, a validated simulation model is established to investigate the heat exchange performance of CPB, in which the nonuniformly distributed thermal properties in CPB are fully considered. The results indicate that the increase in the porosity has a negative effect on the heat exchange performance of CPB. With the increase in the porosity, the decreased rate of the conductive heat transfer in CPB could be up to approximately 18%. In conditions with seepage flow, the heat transfer capacity of CPB could be effectively improved. Generally, a higher hydraulic conductivity corresponds to a higher heat transfer performance of CPB. When the seepage velocity rose from 2 × 10−6 to 6 × 10−6 m/s, the thermal conductivity of CPB achieved a 114% increase from 1.843 to 3.957 W/(m·K). Furthermore, it was found that the thermal energy accumulates along the seepage flow direction, enhancing the thermal influencing radius of the HET in this direction. Thus, the arrangement of HETs should fully take into account the seepage flow effect. This proposed simulation model could provide a reference for parameter determination and optimization of CMBG systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3