Author:
Lee Jihu,Son Sung-Hun,Kim Kibum
Abstract
Indoor heating systems currently used are highly dependent on fossil fuels; hence, it is urgent to develop a new heating system to achieve carbon zero-emission. A solar air heater is eco-friendly because it generates nearly zero greenhouse gases. In this study, a parametric study was conducted for optimizing solar air heater design applicable to indoor heating. Installing the internal structure in the solar heater changes the interior flow characteristic, resulting in the air temperature increased by about 14.2 K on average compared to the heater without the internal structure. An additional case study was carried out to optimize the ideal quantity of phase change materials (PCM) in terms of mass fraction and heat capacity for various operating conditions. An excessive amount of PCM (e.g., 66% of the storage space filled with PCM) deteriorates the performance of the air heater unless the entire PCM could be melted during the daytime. After heating, the air temperature was maintained the longest when only 33% of the internal space was filled with PCM. The solar air heater can fully replace or partly assist a conventional heater for indoor heating, and it could reduce approximately 0.6 tCO2 per year.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献