Author:
Iqbal Seemab,Fakhar-e-Alam Muhammad,Atif M.,Ahmed Nasar,-ul-Ahmad Aqrab,Amin N.,Alghamdi Raed,Hanif Atif,Farooq W.
Abstract
The current study is based on Zn/ZnO nanoparticles photodynamic therapy (PDT) mediated effects on healthy liver cells and cancerous cells. The synthesis of Zn/ZnO nanoparticles was accomplished using chemical and hydrothermal methods. The characterization of the synthesized nanoparticles was carried out using manifold techniques (e.g., transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS)). In order to study the biotoxicity of the grown nanoparticles, they were applied individually and in conjunction with the third generation photosensitiser Fotolon (Chlorine e6) in the in vivo model of the normal liver of the Wister rat, and in the in vitro cancerous liver (HepG2) model both in the dark and under a variety of laser exposures (630 nm, Ultraviolet (UV) light). The localization of ZnO nanoparticles was observed by applying fluorescence spectroscopy on a 1 cm2 selected area of normal liver, whereas the in vitro cytotoxicity and reactive oxygen species (ROS) detection were carried out by calculating the loss in the cell viability of the hepatocellular model by applying a neutral red assay (NRA). Furthermore, a statistical analysis is carried out and it is ensured that the p value is less than 0.05. Thus, the current study has highlighted the potential for applying Zn/ZnO nanoparticles in photodynamic therapy that would lead to wider medical applications to improve the efficiency of cancer treatment and its biological aspect study.
Funder
Deanship of Scientific Research, King Saud University
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献