Wireless-Powered Chemical Sensor by 2.4 GHz Wi-Fi Energy-Harvesting Metamaterial

Author:

Lee Wonwoo,Jung Yonghee,Jung Hyunseung,Seo Chulhun,Choo Hosung,Lee Hojin

Abstract

Metamaterial Sensors show significant potential for applications ranging from hazardous chemical detection to biochemical analysis with high-quality sensing properties. However, they require additional measurement systems to analyze the resonance spectrum in real time, making it difficult to use them as a compact and portable sensor system. Herein, we present a novel wireless-powered chemical sensing system by using energy-harvesting metamaterials at microwave frequencies. In contrast to previous studies, the proposed metamaterial sensor utilizes its harvested energy as an intuitive sensing indicator without complicated measurement systems. As the spectral energy-harvesting rate of the proposed metamaterial sensor can be varied by changing the chemical components and their mixtures, we can directly distinguish the chemical species by analyzing the resulting output power levels. Moreover, by using a 2.4 GHz Wi-Fi source, we experimentally realize a prototype chemical sensor system that wirelessly harvests the energy varying from 0 mW up to 7 mW depending on the chemical concentration of the water-based binary mixtures.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3