The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters

Author:

Yang Shucai,Yu Song,He Chunsheng

Abstract

Processing certain kinds of micro-textures onto the surface of tools can improve their wear resistance, reduce the friction between them and machined surfaces, prolong their service life and improve their processing efficiency. When milling titanium alloy with ball-end milling cutters, the cutting force and the cutting heat causes plastic deformation and a concentration of stress on workpiece surfaces, damaging their surface integrity. In this paper, we report on a test involving the milling of titanium alloy, where a micro-texture was placed onto the front of a ball-end cutter and the surface roughness and work hardening of the machined surface were studied. The orthogonal experiment was designed around changes in the diameter of the micro-texture, its depth, the spacing between individual micro-pits, and its distance from the cutting edge. Data from the experiment was then used to assess the influence changes in the micro-texture parameters had upon the roughness and hardening of the surface. The data was processed and analyzed by using regression analysis and a prediction model for surface roughness and work hardening was established. The reliability of the model was then verified. The contents of this paper provide a theoretical basis for improving the cutting performance and the surface machining quality of cemented carbide tools.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3