Author:
Huang Baorui,Zhang Fuchun,Yang Yanning,Zhang Zhiyong
Abstract
The two-probe device of nanorod-coupled gold electrodes is constructed based on the triangular zinc oxide (ZnO) nanorod. The length-dependent electronic transport properties of the ZnO nanorod was studied by density functional theory (DFT) with the non-equilibrium Green’s function (NEGF). Our results show that the current of devices decreases with increasing length of the ZnO nanorod at the same bias voltage. Metal-like behavior for the short nanorod was observed under small bias voltage due to the interface state between gold and the ZnO nanorod. However, the influence of the interface on the device was negligible under the condition that the length of the ZnO nanorod increases. Moreover, the rectification behavior was observed for the longer ZnO nanorod, which was analyzed from the transmission spectra and molecular-projected self-consistent Hamiltonian (MPSH) states. Our results indicate that the ZnO nanorod would have potential applications in electronic-integrated devices.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献