Abstract
Gibbs effect represents the non-uniform convergence of the nth Fourier partial sums in approximating functions in the neighborhood of their non-removable discontinuities (jump discontinuities). The overshoots and undershoots cannot be removed by adding more terms in the series. This effect has been studied in the literature for wavelet and framelet expansions. Dual tight framelets have been proven useful in signal processing and many other applications where translation invariance, or the resulting redundancy, is very important. In this paper, we will study this effect using the dual tight framelets system. This system is generated by the mixed oblique extension principle. We investigate the existence of the Gibbs effect in the truncated expansion of a given function by using some dual tight framelets representation. We also give some examples to illustrate the results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference35 articles.
1. On a certain periodic function;Wilbraham;Camb. Dublin Math. J.,1848
2. VI. A new harmonic analyser
3. Fourier's Series
4. Fourier's Series
5. Introduction to the theory of Fourier’s series;Maxime;Ann. Math.,1906
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献