A Comparative Study of Bitcoin Price Prediction Using Deep Learning

Author:

Ji Suhwan,Kim JongminORCID,Im HyeonseungORCID

Abstract

Bitcoin has recently received a lot of attention from the media and the public due to its recent price surge and crash. Correspondingly, many researchers have investigated various factors that affect the Bitcoin price and the patterns behind its fluctuations, in particular, using various machine learning methods. In this paper, we study and compare various state-of-the-art deep learning methods such as a deep neural network (DNN), a long short-term memory (LSTM) model, a convolutional neural network, a deep residual network, and their combinations for Bitcoin price prediction. Experimental results showed that although LSTM-based prediction models slightly outperformed the other prediction models for Bitcoin price prediction (regression), DNN-based models performed the best for price ups and downs prediction (classification). In addition, a simple profitability analysis showed that classification models were more effective than regression models for algorithmic trading. Overall, the performances of the proposed deep learning-based prediction models were comparable.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Bitcoin: A Peer-to-Peer Electronic Cash System. Technical Reporthttps://bitcoin.org/bitcoin.pdf

2. The Random Character of Stock Market Prices;Cootner,1964

3. Anticipating Cryptocurrency Prices Using Machine Learning

4. Cryptocurrencies as a financial asset: A systematic analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3