Abstract
Point orthogonal projection onto planar algebraic curve plays an important role in computer graphics, computer aided design, computer aided geometric design and other fields. For the case where the test point p is very far from the planar algebraic curve, we propose an improved curvature circle algorithm to find the footpoint. Concretely, the first step is to repeatedly iterate algorithm (the Newton’s steepest gradient descent method) until the iterated point could fall on the planar algebraic curve. Then seek footpoint by using the algorithm (computing footpoint q ) where the core technology is the curvature circle method. And the next step is to orthogonally project the footpoint q onto the planar algebraic curve by using the algorithm (the hybrid tangent vertical foot algorithm). Repeatedly run the algorithm (computing footpoint q ) and the algorithm (the hybrid tangent vertical foot algorithm) until the distance between the current footpoint and the previous footpoint is near 0. Furthermore, we propose Second Remedial Algorithm based on Comprehensive Algorithm B. In particular, its robustness is greatly improved than that of Comprehensive Algorithm B and it achieves our expected result. Numerical examples demonstrate that Second Remedial Algorithm could converge accurately and efficiently no matter how far the test point is from the plane algebraic curve and where the initial iteration point is.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献