PIV Study on Grid-Generated Turbulence in a Free Surface Flow

Author:

Yao Haoyu,Cao Linlin,Wu Dazhuan,Gao Yangyang,Qin Shijie,Yu Faxin

Abstract

To investigate the feature of turbulence developing behind the filter device in a current flow, the flow fields at intermediate downstream distance of an immersed grid in an open water channel are recorded using a two-dimensional (2D) Particle Image Velocimetry (PIV) system. The measurements on a series of vertical and horizontal sections are conducted to reveal the stream-wise evolution and depth diversity of grid turbulence in the free surface flow. Unlike the previous experiments by Laser Doppler Velocimetry (LDV) and Hot-Wire Anemometry (HWA), the integral scales and space-time correlations are estimated without using the Taylor hypothesis in this paper. The distributions of mean velocity, turbulence intensity and integral scale show the transition behavior of grid-generated flow from perturbations to fully merged homogenous turbulence. The distributions of velocity and turbulence intensity become more uniform with increasing distance. While the spatial divergence of integral scale becomes more pronounced as the flow structures develop downstream. The vertical distributions of flow parameters reveal the diversity of flow characteristics in the water depth direction influenced by free surface and the outer part of turbulence boundary layer (TBL) from the channel bottom. The applicability of the newly proposed two-order elliptic approximation model for the space-time correlations of the decaying grid turbulence in channel flow is verified at different positions. The calculated convection velocity for large-scale motion and sweep velocity for small-scale motion based on this model bring a new insight into the dynamic pattern of this type of flow.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3