Chinese Medical Question Answer Matching Using End-to-End Character-Level Multi-Scale CNNs

Author:

Zhang ShengORCID,Zhang Xin,Wang Hui,Cheng Jiajun,Li Pei,Ding Zhaoyun

Abstract

This paper focuses mainly on the problem of Chinese medical question answer matching, which is arguably more challenging than open-domain question answer matching in English due to the combination of its domain-restricted nature and the language-specific features of Chinese. We present an end-to-end character-level multi-scale convolutional neural framework in which character embeddings instead of word embeddings are used to avoid Chinese word segmentation in text preprocessing, and multi-scale convolutional neural networks (CNNs) are then introduced to extract contextual information from either question or answer sentences over different scales. The proposed framework can be trained with minimal human supervision and does not require any handcrafted features, rule-based patterns, or external resources. To validate our framework, we create a new text corpus, named cMedQA, by harvesting questions and answers from an online Chinese health and wellness community. The experimental results on the cMedQA dataset show that our framework significantly outperforms several strong baselines, and achieves an improvement of top-1 accuracy by up to 19%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3