Author:
Tang Wei,Liu Rui,Lu Xiangyong,Zhang Shaogang,Liu Songyong
Abstract
In this study, the tribological behavior of lamellar MoO3 as a lubricant additive was investigated under different concentrations, particle sizes, normal loads, velocity, and temperature. The friction and wear tests were performed using a tribometer and with a reciprocating motion. The results indicate that the friction-reducing ability and antiwear property of the base oil can be improved effectively with the addition of lamellar MoO3. The 0.5 wt % and 0.1 wt % concentrations of MoO3 yield the best antifriction and antiwear effects, respectively. The maximum friction and wear reduction is 19.8% and 55.9%, compared with that of the base oil. It is also found the MoO3 additive can decrease the friction considerably under a high velocity and normal load, and increase the working temperature. The smaller the size of MoO3, the better the friction-reducing effect the lamellar MoO3 shows. The friction-reducing and antiwear mechanisms of lamellar MoO3 were discussed.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献