Abstract
Fibre-reinforced composite structures under complex loads exhibit gradual damage behaviour with degradation of effective mechanical properties and change of their structural dynamic behaviour. In case of composite rotors, this can lead to catastrophic failure if an eigenfrequency is met by the rotational speed. The description and simulation analysis of the gradual damage behaviour of composite rotors therefore provides the fundamentals for a first understanding of complex and partially-unpredicted structural phenomena. Therefore, a simulation tool is developed using a finite element model, which calculates the damage-dependent structural dynamic behaviour of selected composite rotors considering both damage initiation and in-plane damage evolution due to a combination of out-of-plane and in-plane loads. Damage initiation is determined using failure criteria, whereas the gradual damage evolution using a validated continuum damage mechanics model. Numerical results are compared with experimental results for rotor-typical stress states to assess the model quality, which could be later used for damage identification approaches.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献