Author:
Wang Jianjun,Li Lin,Shen Ziting,Guo Peng,Li Meng,Zhao Bin,Fang Lili,Yang Linfeng
Abstract
Dispersion-corrected density functional theory (DFT) calculations reveal that the layered electride of dicalcium nitride (Ca2N) exhibits stronger interlayer binding interactions but lower interlayer friction behavior than that of traditional layered lubricants weakly bonded by van der Waals (vdW) interactions, such as graphite, h-BN, and MoS2. These results are attributed to the two-dimensional (2D) homogeneous conduction electrons distribution in the middle of the interlayer space of Ca2N, which yields a smooth sliding barrier and hence ultralow friction behavior. The interesting results obtained in this study have not only broadened the scope of 2D solid lubricants but also enriched the physical understanding of ultralow friction mechanism for 2D systems.
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献