Damage Evolution Modelling for Rock Materials Based on the Principle of Least Energy Dissipation Rate within Irreversible Thermodynamics

Author:

Li Xiaoming,Wang MingwuORCID

Abstract

The nonlinear mechanical behavior of rock significantly influences the design and construction of underground structures. Due to the complexity and diversity of the damage mechanisms of rock, the damage variable directly defined by partial-damage mechanisms is insufficient in reflecting the progressive-failure process of rock comprehensively. So, in this paper, a novel damage variable is introduced into the plastic-strain rate based on the theoretical framework of irreversible thermodynamics to overcome this defect. The general expression is derived according to the least energy dissipation rate principle. The proposed damage variable can represent the irreversible energy dissipation process and has a strictly theoretical basis in mechanics. Moreover, the granite and marble stress-strain curves are simulated and compared with the Lemaitre damage model, Mazars damage model, and statistical damage model. The results show that the form of the proposed damage variable is practical and straightforward and can better reflect the entire stress-strain relationship of rock. Furthermore, the initial value of the inelastic response strain can be given directly through the proposed damage variable. The model presented here can overcome the issue that the current models need to select the damage threshold indirectly or assume it in advance and ensures that the damage evolution characteristics follow the first principle entirely.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3