Response Surface Method Analysis of Chemically Stabilized Fiber-Reinforced Soil

Author:

Almajed AbdullahORCID,Srirama Dinesh,Moghal Arif Ali BaigORCID

Abstract

One of the significant issues persisting in the study of soil stabilization is the establishment of the optimum proportions of the quantity of stabilizer to be added to the soil. Determining optimum solutions or the most feasible remedies for the utilization of stabilizing products in terms of their dose rates has become a significant concern in major civil engineering design projects. Using the response surface methodology, this study primarily focused on investigating the optimal levels of reinforcement fiber length (FL), fiber dosage (FD), and curing time (CT) for geotechnical parameters of stabilized soil. To realize this objective, an experimental study was undertaken on the California bearing ratio (CBR) and unconfined compressive strength (UCS). Hydraulic conductivity (HC) tests were also performed, with stabilizer proportions of 6–12 mm for the FL and 0.2–0.6% for the FD calculated for the total dry weight of soil and 6% lime (total weight of dry soil). The curing times used for testing were 0, 7, and 14 days for the CBR tests; 60, 210, and 360 days for the UCS tests; and 7, 17, and 28 days for the HC tests. All practical experiments were conducted with experimental techniques using stabilizer proportions and curing times. The FL, FD, CT, CBR, UCS, and HC response factors were determined using the central composite design. The results point toward a statistically significant model constructed (p ≤ 0.05) using the analysis of variance. The results from this optimization procedure show that the optimal values for the FL, FD, and CT were 11.1 mm, 0.5%, and 13.2 days, respectively, as these provided the maximum values for the CBR; 11.7 mm for the FL, 0.3% for the FD, and 160 days for the CT corresponded to the maximum values for the UCS; and 10.5 mm for the FL, 0.5% for the FD, and 15 days for the CT led to the minimum value for the HC. In practice, the suggested values may be useful for experiments, especially for preliminary assessments prior to stabilization.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3